Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Mireia Martı́nez i Sellarès, 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/113081

Realising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problem

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Given a field $k$ and a finite group $G$, is there a Galois field extension $K|k$ such that its Galois group is isomorphic to $G$? Such an innocent question and yet it remains unsolved: this is what is known as the Inverse Galois Problem. In the present Bachelor thesis we show that this question has a positive answer if the field is $\mathbb{Q}$ and the group is either $S_n$ or $A_n$, following the strategy devised by David Hilbert in his paper Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten (1892). We start with two basic examples and an exposition of relevant results from algebraic number theory, and then move on to proving Hilbert’s Irreducibility Theorem. As a consequence, we prove that the symmetric group $S_n$ and the alternating group $A_n$ are realisable as Galois groups over the field of rational numbers $\mathbb{Q}$.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Núria Vila i Oliva

Citació

Citació

MARTÍNEZ I SELLARÈS, Mireia. Realising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problem. [consulta: 28 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/113081]

Exportar metadades

JSON - METS

Compartir registre