Realising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problem

dc.contributor.advisorVila, Núria (Vila i Oliva)
dc.contributor.authorMartínez i Sellarès, Mireia
dc.date.accessioned2017-06-29T10:37:06Z
dc.date.available2017-06-29T10:37:06Z
dc.date.issued2017-01-17
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Núria Vila i Olivaca
dc.description.abstractGiven a field $k$ and a finite group $G$, is there a Galois field extension $K|k$ such that its Galois group is isomorphic to $G$? Such an innocent question and yet it remains unsolved: this is what is known as the Inverse Galois Problem. In the present Bachelor thesis we show that this question has a positive answer if the field is $\mathbb{Q}$ and the group is either $S_n$ or $A_n$, following the strategy devised by David Hilbert in his paper Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten (1892). We start with two basic examples and an exposition of relevant results from algebraic number theory, and then move on to proving Hilbert’s Irreducibility Theorem. As a consequence, we prove that the symmetric group $S_n$ and the alternating group $A_n$ are realisable as Galois groups over the field of rational numbers $\mathbb{Q}$.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/113081
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Mireia Martı́nez i Sellarès, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de Galois
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationGrups simètricsca
dc.subject.classificationExtensions de cossos (Matemàtica)ca
dc.subject.otherGalois theory
dc.subject.otherBachelor's theses
dc.subject.otherSymmetric groupsen
dc.subject.otherField extensions (Mathematics)en
dc.titleRealising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problemca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
353.35 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria