Global patterns and extreme events in sovereign risk premia: A fuzzy vs deep learning comparative

dc.contributor.authorAlaminos Aguilera, David
dc.contributor.authorSalas Compas, M. Belén
dc.contributor.authorFernández-Gámez, Manuel A.
dc.date.accessioned2025-06-18T08:45:39Z
dc.date.available2025-06-18T08:45:39Z
dc.date.issued2024-04-17
dc.date.updated2025-06-18T08:45:40Z
dc.description.abstractInvestment in foreign countries has become more common nowadays and this implies that there may be risks inherent to these investments, being the sovereign risk premium the measure of such risk. Many studies have examined the behaviour of the sovereign risk premium, nevertheless, there are limitations to the current models and the literature calls for further investigation of the issue as behavioural factors are necessary to analyse the investor’s risk perception.
dc.format.extent30 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec757298
dc.identifier.issn2029-4913
dc.identifier.urihttps://hdl.handle.net/2445/221619
dc.language.isoeng
dc.publisherVilnius Gediminas Technical University
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3846/tede.2024.20488
dc.relation.ispartofTechnological and Economic Development of Economy, 2024, vol. 30, num.3, p. 753-782
dc.relation.urihttps://doi.org/10.3846/tede.2024.20488
dc.rightscc-by (c) Alaminos, David et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Empresa)
dc.subject.classificationLògica difusa
dc.subject.classificationRisc (Assegurances)
dc.subject.classificationPrimes (Assegurances)
dc.subject.otherFuzzy logic
dc.subject.otherRisk (Insurance)
dc.subject.otherInsurance premiums
dc.titleGlobal patterns and extreme events in sovereign risk premia: A fuzzy vs deep learning comparative
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
890075.pdf
Mida:
1.41 MB
Format:
Adobe Portable Document Format