Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Nerea Ibarra García, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/191160

The Dirichlet problem and Kakutani’s theorem

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In this memoir we prove a weak version in $\mathbb{R}^2$ of Kakutani's theorem which gives a solution to the Dirichlet problem. The Dirichlet problem is a classical problem in partial differential equations with many applications in various fields. Given a bounded domain $D \subset$ $\mathbb{R}^d$ and a function $f$ continuous at $\partial D$, the Dirichlet problem consists in finding an harmonic function $u$ on $D$, which matches the values of $f$ on the boundary. It is known that for very general domains the solution exists and is unique. The solution given by Kakutani in 1944 is based in the use of probabilistic methods, specifically in the properties of Brownian motion, which will play an important role throughout this memoir.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Francesc Xavier Massaneda Clares

Citació

Citació

IBARRA GARCÍA, Nerea. The Dirichlet problem and Kakutani’s theorem. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/191160]

Exportar metadades

JSON - METS

Compartir registre