The Dirichlet problem and Kakutani’s theorem

dc.contributor.advisorMassaneda Clares, Francesc Xavier
dc.contributor.authorIbarra García, Nerea
dc.date.accessioned2022-11-28T08:13:17Z
dc.date.available2022-11-28T08:13:17Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Francesc Xavier Massaneda Claresca
dc.description.abstract[en] In this memoir we prove a weak version in $\mathbb{R}^2$ of Kakutani's theorem which gives a solution to the Dirichlet problem. The Dirichlet problem is a classical problem in partial differential equations with many applications in various fields. Given a bounded domain $D \subset$ $\mathbb{R}^d$ and a function $f$ continuous at $\partial D$, the Dirichlet problem consists in finding an harmonic function $u$ on $D$, which matches the values of $f$ on the boundary. It is known that for very general domains the solution exists and is unique. The solution given by Kakutani in 1944 is based in the use of probabilistic methods, specifically in the properties of Brownian motion, which will play an important role throughout this memoir.ca
dc.format.extent49 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/191160
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Nerea Ibarra García, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationProblema de Dirichletca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationProblemes de contornca
dc.subject.classificationMoviment browniàca
dc.subject.classificationAnàlisi harmònicaca
dc.subject.otherDirichlet problemen
dc.subject.otherBachelor's theses
dc.subject.otherBoundary value problemsen
dc.subject.otherBrownian movementsen
dc.subject.otherHarmonic analysisen
dc.titleThe Dirichlet problem and Kakutani’s theoremca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_nerea_ibarra_garcia.pdf
Mida:
692.85 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria