Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Inguanzo, Anna et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/174765

Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson's disease

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Background: Parkinson's disease (PD) is a heterogeneous condition. Cluster analysis based on cortical thickness has been used to define distinct patterns of brain atrophy in PD. However, the potential of other neuroimaging modalities, such as white matter (WM) fractional anisotropy (FA), which has also been demonstrated to be altered in PD, has not been investigated. Objective: We aim to characterize PD subtypes using a multimodal clustering approach based on cortical and subcortical gray matter (GM) volumes and FA measures. Methods: We included T1-weighted and diffusion-weighted MRI data from 62 PD patients and 33 healthy controls. We extracted mean GM volumes from 48 cortical and 17 subcortical regions using FSL-VBM, and the mean FA from 20 WM tracts using Tract-Based Spatial Statistics (TBSS). Hierarchical cluster analysis was performed with the PD sample using Ward's linkage method. Whole-brain voxel-wise intergroup comparisons of VBM and TBSS data were also performed using FSL. Neuropsychological and demographic statistical analyses were conducted using IBM SPSS Statistics 25.0. Results: We identified three PD subtypes, with prominent differences in GM patterns and little WM involvement. One group (n = 15) with widespread cortical and subcortical GM volume and WM FA reductions and pronounced cognitive deficits; a second group (n = 21) with only cortical atrophy limited to frontal and temporal regions and more specific neuropsychological impairment, and a third group (n = 26) without detectable atrophy or cognition impairment. Conclusion: Multimodal MRI data allows classifying PD patients into groups according to GM and WM patterns, which in turn are associated with the cognitive profile.

Citació

Citació

INGUANZO, Anna, SALA LLONCH, Roser, SEGURA I FÀBREGAS, Bàrbara, EROSTARBE, H., ABÓS, Alexandra, CAMPABADAL DELGADO, Anna, URIBE, Carme, BAGGIO, Hugo césar, COMPTA, Yaroslau, MARTÍ DOMÈNECH, Ma. josep, VALLDEORIOLA SERRA, Francesc, BARGALLÓ ALABART, Núria​, JUNQUÉ I PLAJA, Carme. Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson's disease. _Parkinsonism & Related Disorders_. 2020. Vol. 82, núm. 16-23. [consulta: 21 de gener de 2026]. ISSN: 1353-8020. [Disponible a: https://hdl.handle.net/2445/174765]

Exportar metadades

JSON - METS

Compartir registre