Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson's disease

dc.contributor.authorInguanzo, Anna
dc.contributor.authorSala Llonch, Roser
dc.contributor.authorSegura i Fàbregas, Bàrbara
dc.contributor.authorErostarbe, H.
dc.contributor.authorAbós, Alexandra
dc.contributor.authorCampabadal Delgado, Anna
dc.contributor.authorUribe, Carme
dc.contributor.authorBaggio, Hugo César
dc.contributor.authorCompta, Yaroslau
dc.contributor.authorMartí Domènech, Ma. Josep
dc.contributor.authorValldeoriola Serra, Francesc
dc.contributor.authorBargalló Alabart, Núria​
dc.contributor.authorJunqué i Plaja, Carme, 1955-
dc.date.accessioned2021-03-09T11:31:28Z
dc.date.available2021-03-09T11:31:28Z
dc.date.issued2020-11-12
dc.date.updated2021-03-09T09:31:40Z
dc.description.abstractBackground: Parkinson's disease (PD) is a heterogeneous condition. Cluster analysis based on cortical thickness has been used to define distinct patterns of brain atrophy in PD. However, the potential of other neuroimaging modalities, such as white matter (WM) fractional anisotropy (FA), which has also been demonstrated to be altered in PD, has not been investigated. Objective: We aim to characterize PD subtypes using a multimodal clustering approach based on cortical and subcortical gray matter (GM) volumes and FA measures. Methods: We included T1-weighted and diffusion-weighted MRI data from 62 PD patients and 33 healthy controls. We extracted mean GM volumes from 48 cortical and 17 subcortical regions using FSL-VBM, and the mean FA from 20 WM tracts using Tract-Based Spatial Statistics (TBSS). Hierarchical cluster analysis was performed with the PD sample using Ward's linkage method. Whole-brain voxel-wise intergroup comparisons of VBM and TBSS data were also performed using FSL. Neuropsychological and demographic statistical analyses were conducted using IBM SPSS Statistics 25.0. Results: We identified three PD subtypes, with prominent differences in GM patterns and little WM involvement. One group (n = 15) with widespread cortical and subcortical GM volume and WM FA reductions and pronounced cognitive deficits; a second group (n = 21) with only cortical atrophy limited to frontal and temporal regions and more specific neuropsychological impairment, and a third group (n = 26) without detectable atrophy or cognition impairment. Conclusion: Multimodal MRI data allows classifying PD patients into groups according to GM and WM patterns, which in turn are associated with the cognitive profile.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec704924
dc.identifier.issn1353-8020
dc.identifier.urihttps://hdl.handle.net/2445/174765
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.parkreldis.2020.11.010
dc.relation.ispartofParkinsonism & Related Disorders, 2020, vol. 82, p. 16-23
dc.relation.urihttps://doi.org/10.1016/j.parkreldis.2020.11.010
dc.rightscc-by-nc-nd (c) Inguanzo, Anna et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Neurociències (UBNeuro))
dc.subject.classificationMalaltia de Parkinson
dc.subject.classificationRessonància magnètica
dc.subject.classificationAnàlisi de conglomerats
dc.subject.otherParkinson's disease
dc.subject.otherMagnetic resonance
dc.subject.otherCluster analysis
dc.titleHierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson's disease
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
704924.pdf
Mida:
3.34 MB
Format:
Adobe Portable Document Format