3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms
| dc.contributor.author | Castillo Reyes, Octavio | |
| dc.contributor.author | Modesto, David | |
| dc.contributor.author | Queralt i Capdevila, Pilar | |
| dc.contributor.author | Marcuello Pascual, Alejandro | |
| dc.contributor.author | Ledo Fernández, Juanjo | |
| dc.contributor.author | Amor-Martin, Adrian | |
| dc.contributor.author | de la Puente, Josep | |
| dc.contributor.author | García-Castillo, Luis Emilio | |
| dc.date.accessioned | 2024-02-05T16:30:28Z | |
| dc.date.available | 2024-02-05T16:30:28Z | |
| dc.date.issued | 2022-03-01 | |
| dc.date.updated | 2024-02-05T16:30:28Z | |
| dc.description.abstract | We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general. | |
| dc.format.extent | 12 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 718060 | |
| dc.identifier.issn | 0098-3004 | |
| dc.identifier.uri | https://hdl.handle.net/2445/207171 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier Ltd | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.cageo.2021.105030 | |
| dc.relation.ispartof | Computers & Geosciences, 2022, vol. 160 | |
| dc.relation.uri | https://doi.org/10.1016/j.cageo.2021.105030 | |
| dc.rights | cc-by-nc-nd (c) Elsevier Ltd, 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Dinàmica de la Terra i l'Oceà) | |
| dc.subject.classification | Prospecció magnetotel·lúrica | |
| dc.subject.classification | Prospecció geofísica | |
| dc.subject.classification | Electromagnetisme | |
| dc.subject.other | Magnetotelluric prospecting | |
| dc.subject.other | Geophysical exploration | |
| dc.subject.other | Electromagnetism | |
| dc.title | 3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1