The geometrisation conjecture of 3-manifolds

dc.contributor.advisorGutiérrez Marín, Javier J.
dc.contributor.authorPrieto de la Cruz, Ángel
dc.date.accessioned2020-02-25T08:44:55Z
dc.date.available2020-02-25T08:44:55Z
dc.date.issued2019-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Javier J. Gutiérrez Marínca
dc.description.abstract[en] This thesis aims to be a first approach to Thurston’s geometrisation conjecture, which states that each 3-manifold decomposes canonically into pieces admitting geometric structures. Starting from the definition of a model geometry, we will see first that the only three model geometries in dimension 2 are the Euclidean, the elliptic and the hyperbolic. Then we will show how Thurston’s theorem asserts that there are a total of eight model geometries in dimension 3, and we will classify six of them as Seifert spaces. We will finish by explaining the geometrisation conjecture through a historical perspective, from the first results on sphere and torus decompositions to Perelman’s proof. We will also sketch a proof of the Poincaré conjecture as an immediate corollary.ca
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/151137
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Ángel Prieto de la Cruz, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTopologia de baixa dimensióca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationVarietats topològiquesca
dc.subject.classificationVarietats topològiques de dimensió 3ca
dc.subject.otherLow-dimensional topologyen
dc.subject.otherBachelor's theses
dc.subject.otherTopological manifoldsen
dc.subject.otherThree-manifolds (Topology)en
dc.titleThe geometrisation conjecture of 3-manifoldsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
151137.pdf
Mida:
694.15 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria