Stochastic Volterra equations in the plane: smoothness of the law
| dc.contributor.author | Rovira Escofet, Carles | |
| dc.contributor.author | Sanz-Solé, Marta | |
| dc.date.accessioned | 2020-03-05T16:05:21Z | |
| dc.date.available | 2020-03-05T16:05:21Z | |
| dc.date.issued | 1997 | |
| dc.description | Preprint enviat per a la seva publicació en una revista científica: Stochastic Analysis and Applications, 2002, Vol. 19, Núm. 6, pp. 983-1004. [https://doi.org/10.1081/SAP-120000757] | ca |
| dc.description.abstract | We give sufficient conditions ensuring the smoothness of the density for the law of the solution of Volterra equations in the plane. One of the motivations for the study of such class of equations is provided by non-linear hyperbolic stochastic partial differential equations appearing in the construction of some path-valued processes on manifolds. The proof is based on Malliavin Calculus. | ca |
| dc.format.extent | 15 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/152108 | |
| dc.language.iso | eng | ca |
| dc.publisher | Universitat de Barcelona | ca |
| dc.relation.isformatof | Reproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 37.21] | |
| dc.relation.ispartofseries | Mathematics Preprint Series; 226 | ca |
| dc.rights | (c) Carles Rovira et al., 1997 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.source | Preprints de Matemàtiques - Mathematics Preprint Series | |
| dc.subject.classification | Càlcul de Malliavin | |
| dc.subject.classification | Equacions diferencials estocàstiques | |
| dc.subject.classification | Equacions integrals estocàstiques | |
| dc.subject.other | Universitat de Barcelona. Institut de Matemàtica | |
| dc.title | Stochastic Volterra equations in the plane: smoothness of the law | ca |
| dc.type | info:eu-repo/semantics/article | ca |
| dc.type | info:eu-repo/semantics/submittedVersion |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- MPS_N226.pdf
- Mida:
- 889.98 KB
- Format:
- Adobe Portable Document Format
- Descripció: