Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) David Martínez Carpena, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/165004

Teoria homotòpica de tipus

Títol de la revista

ISSN de la revista

Títol del volum

Resum

[en] Homotopy type theory is a branch of mathematics that emerged in the decade of 2010. The major novelties with respect to previous type theories are the association of types with $\infty$ -groupoids, Voevodsky’s univalence axiom, and higher-order inductive types. Higher- order inductive types allow certain objects to be defined, such as a circle or a torus, in a synthetic way. The first chapters of this work offer an introduction to homotopy type theory, focusing especially on understanding higher-order inductive types. Due to the short time elapsed since the advent of homotopy type theory, there are many open questions waiting to be answered. This work sets out a research direction motivated by one of these questions: how to find an appropriate definition of orientability which is meaningful for surfaces or, more generally, for manifolds. From the existing definition of a torus as a higher-order inductive type, we have studied an analogous definition of a Klein bottle, focusing on the fact that a torus is a two-sheeted covering of a Klein bottle. This work contains basic facts about coverings in homotopy type theory, as well as a few results that are relevant in the special case of the torus and the Klein bottle.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Carles Casacuberta

Citació

Citació

MARTÍNEZ CARPENA, David. Teoria homotòpica de tipus. [consulta: 3 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/165004]

Exportar metadades

JSON - METS

Compartir registre