Teoria homotòpica de tipus

dc.contributor.advisorCasacuberta, Carles
dc.contributor.authorMartínez Carpena, David
dc.date.accessioned2020-06-10T09:03:47Z
dc.date.available2020-06-10T09:03:47Z
dc.date.issued2020-01-19
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Carles Casacubertaca
dc.description.abstract[en] Homotopy type theory is a branch of mathematics that emerged in the decade of 2010. The major novelties with respect to previous type theories are the association of types with $\infty$ -groupoids, Voevodsky’s univalence axiom, and higher-order inductive types. Higher- order inductive types allow certain objects to be defined, such as a circle or a torus, in a synthetic way. The first chapters of this work offer an introduction to homotopy type theory, focusing especially on understanding higher-order inductive types. Due to the short time elapsed since the advent of homotopy type theory, there are many open questions waiting to be answered. This work sets out a research direction motivated by one of these questions: how to find an appropriate definition of orientability which is meaningful for surfaces or, more generally, for manifolds. From the existing definition of a torus as a higher-order inductive type, we have studied an analogous definition of a Klein bottle, focusing on the fact that a torus is a two-sheeted covering of a Klein bottle. This work contains basic facts about coverings in homotopy type theory, as well as a few results that are relevant in the special case of the torus and the Klein bottle.ca
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/165004
dc.language.isocatca
dc.rightscc-by-nc-nd (c) David Martínez Carpena, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de l'homotopiaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTor (Geometria)ca
dc.subject.classificationÀlgebra homològicaca
dc.subject.classificationLògica informàticaca
dc.subject.otherHomotopy theoryen
dc.subject.otherBachelor's theses
dc.subject.otherTorus (Geometry)en
dc.subject.otherHomological algebraen
dc.subject.otherComputer logicen
dc.titleTeoria homotòpica de tipusca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
165004.pdf
Mida:
626.26 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria