Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/187022
Sub-seasonal to seasonal climate forecasting using machine learning
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The main topic of this work is the study and the application of Machine Learning (ML) techniques to improve probabilistic forecasts of two-meter temperature and total precipitation at sub-seasonal scales (i.e. several weeks ahead) for the whole globe. We analyze the performance of a number of Machine Learning methods and finally we combine the best models to obtain the optimal prediction at each latitude, longitude, and for each lead time.
In addition, the results of this work have been presented to an open prize challenge launched by the World Meteorological Organization (WMO) to improve current forecasts of precipitation and temperature from state-of-the-art numerical weather and climate prediction models 3 to 6 weeks into the future using Artificial Intelligence.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Jordi Vitrià i Marca i Llorenç Lledó Ponsatí
Citació
Citació
BECH SALA, Sergi. Sub-seasonal to seasonal climate forecasting using machine learning. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/187022]