Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) Sergi Bech Sala, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/187022

Sub-seasonal to seasonal climate forecasting using machine learning

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The main topic of this work is the study and the application of Machine Learning (ML) techniques to improve probabilistic forecasts of two-meter temperature and total precipitation at sub-seasonal scales (i.e. several weeks ahead) for the whole globe. We analyze the performance of a number of Machine Learning methods and finally we combine the best models to obtain the optimal prediction at each latitude, longitude, and for each lead time. In addition, the results of this work have been presented to an open prize challenge launched by the World Meteorological Organization (WMO) to improve current forecasts of precipitation and temperature from state-of-the-art numerical weather and climate prediction models 3 to 6 weeks into the future using Artificial Intelligence.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Jordi Vitrià i Marca i Llorenç Lledó Ponsatí

Citació

Citació

BECH SALA, Sergi. Sub-seasonal to seasonal climate forecasting using machine learning. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/187022]

Exportar metadades

JSON - METS

Compartir registre