Sub-seasonal to seasonal climate forecasting using machine learning

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.advisorLledó Ponsatí, Llorenç
dc.contributor.authorBech Sala, Sergi
dc.date.accessioned2022-06-27T08:10:02Z
dc.date.available2022-06-27T08:10:02Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Jordi Vitrià i Marca i Llorenç Lledó Ponsatíca
dc.description.abstract[en] The main topic of this work is the study and the application of Machine Learning (ML) techniques to improve probabilistic forecasts of two-meter temperature and total precipitation at sub-seasonal scales (i.e. several weeks ahead) for the whole globe. We analyze the performance of a number of Machine Learning methods and finally we combine the best models to obtain the optimal prediction at each latitude, longitude, and for each lead time. In addition, the results of this work have been presented to an open prize challenge launched by the World Meteorological Organization (WMO) to improve current forecasts of precipitation and temperature from state-of-the-art numerical weather and climate prediction models 3 to 6 weeks into the future using Artificial Intelligence.ca
dc.format.extent70 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/187022
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Sergi Bech Sala, 2022
dc.rightscodi: Apache (c) Sergi Bech Sala, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttps://www.apache.org/licenses/LICENSE-2.0*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationPrevisió del tempsca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationPrecipitacions (Meteorologia)ca
dc.subject.classificationTemperatura atmosfèricaca
dc.subject.classificationModels matemàticsca
dc.subject.otherMachine learningen
dc.subject.otherWeather forecastingen
dc.subject.otherComputer softwareen
dc.subject.otherPrecipitations (Meteorology)en
dc.subject.otherAtmospheric temperatureen
dc.subject.otherBachelor's thesesen
dc.subject.otherMathematical modelsen
dc.titleSub-seasonal to seasonal climate forecasting using machine learningca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi font.zip
Mida:
112.81 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_bech_sala_sergi.pdf
Mida:
3.71 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria