Poncelet's porism

dc.contributor.advisorNaranjo del Val, Juan Carlos
dc.contributor.authorRojas González, Andrés
dc.date.accessioned2017-05-02T09:26:09Z
dc.date.available2017-05-02T09:26:09Z
dc.date.issued2016-06
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Valca
dc.description.abstractGiven two non-degenerate conics $C$ and $D$ in the complex projective plane $\mathbb{P}^{2}_{\mathbb{C}}$ , consider the following problem: constructing a closed polygon inscribed in $C$ and circumscribed about $D$. Assuming that the polygon may have self-intersections, a first approach to build such a polygon could be the next one. Take an arbitrary point $p_0 \in C$ and choose $l_0$ one of the two tangent lines to $D$ passing through $p_0$. If the line $l_0$ is not tangent to $C$ there exists a point $p_1 \in {C} \cap l_0 $ different from $p_0$. Then, take $l_1 \neq l_0$ the tangent line to $D$ through $p_1$. In a similar way, $l_1$ must intersect $C$ at a point $p_2 \neq p_1$.ca
dc.format.extent67 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/110307
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Andrés Rojas González, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCorbes algebraiquesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationSuperfícies de Riemannca
dc.subject.classificationAutomorfismesca
dc.subject.classificationCorbes el·líptiquesca
dc.subject.classificationTeoria de torsió (Àlgebra)ca
dc.subject.otherAlgebraic curvesen
dc.subject.otherBachelor's theses
dc.subject.otherRiemann surfacesen
dc.subject.otherAutomorphismsen
dc.subject.otherElliptic curvesen
dc.subject.otherTorsion theory (Algebra)en
dc.titlePoncelet's porismca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.37 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria