Una introducció a l'estadística bayesiana

dc.contributor.advisorJulià de Ferran, Olga
dc.contributor.authorOliveres Luna, Patrícia
dc.date.accessioned2018-05-10T07:49:17Z
dc.date.available2018-05-10T07:49:17Z
dc.date.issued2017-06-28
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Olga Julià de Ferranca
dc.description.abstract[en] Bayesian statistics, based on Bayes' Theorem, arise when we expand classical inference to contexts where a more subjective interpretation of probability is needed. In this paper we define the basic concepts that are necessary to make bayesian inference. We are gonna focus on single-parameter models, as we will see: the binomial model, the normal model with known variance, the exponencial model and the Poisson model. We define concepts such as conjugate laws, informative and noninformative priors and other aspects that are useful for a bayesian analysis. Finally, one can nd two examples, both made using the statistic programming language R, where we apply most of the introduced concepts and techniques.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/122262
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Patrícia Oliveres Luna, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEstadística bayesiana
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationInferènciaca
dc.subject.classificationAnàlisi de variànciaca
dc.subject.otherBayesian statistical decision
dc.subject.otherBachelor's theses
dc.subject.otherInferenceen
dc.titleUna introducció a l'estadística bayesianaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
666.48 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria