Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Sorić et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/187600

Density forecasts of inflation using Gaussian process regression models

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The present study uses Gaussian Process regression models for generating density forecasts of inflation within the New Keynesian Phillips curve (NKPC) framework. The NKPC is a structural model of inflation dynamics in which we include the output gap, inflation expectations, fuel world prices and money market interest rates as predictors. We estimate country-specific time series models for the 19 Euro Area (EA) countries. As opposed to other machine learning models, Gaussian Process regression allows estimating confidence intervals for the predictions. The performance of the proposed model is assessed in a one-step-ahead forecasting exercise. The results obtained point out the recent inflationary pressures and show the potential of Gaussian Process regression for forecasting purposes.

Citació

Citació

SORIĆ, Petar, MONTE MORENO, Enric, TORRA PORRAS, Salvador, CLAVERÍA GONZÁLEZ, Óscar. Density forecasts of inflation using Gaussian process regression models. _IREA – Working Papers_. 2022. Vol.  IR22/10. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/187600]

Exportar metadades

JSON - METS

Compartir registre