Density forecasts of inflation using Gaussian process regression models

dc.contributor.authorSorić, Petar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.contributor.authorClavería González, Óscar
dc.date.accessioned2022-07-12T09:46:12Z
dc.date.available2022-07-12T09:46:12Z
dc.date.issued2022
dc.description.abstractThe present study uses Gaussian Process regression models for generating density forecasts of inflation within the New Keynesian Phillips curve (NKPC) framework. The NKPC is a structural model of inflation dynamics in which we include the output gap, inflation expectations, fuel world prices and money market interest rates as predictors. We estimate country-specific time series models for the 19 Euro Area (EA) countries. As opposed to other machine learning models, Gaussian Process regression allows estimating confidence intervals for the predictions. The performance of the proposed model is assessed in a one-step-ahead forecasting exercise. The results obtained point out the recent inflationary pressures and show the potential of Gaussian Process regression for forecasting purposes.ca
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/187600
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2022/202210.pdf
dc.relation.ispartofIREA – Working Papers, 2022, IR22/10
dc.relation.ispartofAQR – Working Papers, 2022, AQR22/07
dc.relation.ispartofseries[WP E-IR22/10]ca
dc.relation.ispartofseries[WP E-AQR22/07]
dc.rightscc-by-nc-nd, (c) Sorić et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationPrevisió econòmica
dc.subject.classificationCorba de Phillipscat
dc.subject.otherMachine learning
dc.subject.otherTime-series analysis
dc.subject.otherEconomic forecasting
dc.subject.otherPhillips curveeng
dc.titleDensity forecasts of inflation using Gaussian process regression modelsca
dc.typeinfo:eu-repo/semantics/workingPaperca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR22_010_Soric+Monte+Torre+Claveria.pdf
Mida:
1.75 MB
Format:
Adobe Portable Document Format
Descripció: