Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183203
Analyzing state-of-the-art CNN’s explainability focusing on food classification
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Convolutional Neural Networks (CNNs) are Deep Learning algorithms that can be applied to a wide range of environments with a high performance. We will study all the elements that form the CNNs, learn how they work, how to train them and how to diagnose its performance. We will also work the state-of-the-art visual explainability algorithms developing how they create their heatmaps. In the practical part we will use CNNs in
order to classify food images into their classes and we will apply the studied explainability algorithms to understand the predictions made by the neural networks. Finally, we will perform a both qualitative and quantitative comparison between the explanations given by the applied algorithms.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Petia Radeva i Javier Ródenas Cumplido
Citació
Citació
BERGADÀ SALSEN, Joan. Analyzing state-of-the-art CNN’s explainability focusing on food classification. [consulta: 29 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/183203]