Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) Joan Bergadà Salsen, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183203

Analyzing state-of-the-art CNN’s explainability focusing on food classification

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Convolutional Neural Networks (CNNs) are Deep Learning algorithms that can be applied to a wide range of environments with a high performance. We will study all the elements that form the CNNs, learn how they work, how to train them and how to diagnose its performance. We will also work the state-of-the-art visual explainability algorithms developing how they create their heatmaps. In the practical part we will use CNNs in order to classify food images into their classes and we will apply the studied explainability algorithms to understand the predictions made by the neural networks. Finally, we will perform a both qualitative and quantitative comparison between the explanations given by the applied algorithms.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Petia Radeva i Javier Ródenas Cumplido

Citació

Citació

BERGADÀ SALSEN, Joan. Analyzing state-of-the-art CNN’s explainability focusing on food classification. [consulta: 29 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/183203]

Exportar metadades

JSON - METS

Compartir registre