Analyzing state-of-the-art CNN’s explainability focusing on food classification

dc.contributor.advisorRadeva, Petia
dc.contributor.advisorRódenas Cumplido, Javier
dc.contributor.authorBergadà Salsen, Joan
dc.date.accessioned2022-02-16T08:54:17Z
dc.date.available2022-02-16T08:54:17Z
dc.date.issued2020-06-21
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Petia Radeva i Javier Ródenas Cumplidoca
dc.description.abstract[en] Convolutional Neural Networks (CNNs) are Deep Learning algorithms that can be applied to a wide range of environments with a high performance. We will study all the elements that form the CNNs, learn how they work, how to train them and how to diagnose its performance. We will also work the state-of-the-art visual explainability algorithms developing how they create their heatmaps. In the practical part we will use CNNs in order to classify food images into their classes and we will apply the studied explainability algorithms to understand the predictions made by the neural networks. Finally, we will perform a both qualitative and quantitative comparison between the explanations given by the applied algorithms.ca
dc.format.extent80 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/183203
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) Joan Bergadà Salsen, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationXarxes neuronals convolucionalsca
dc.subject.classificationReconeixement òptic de formesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationVisió per ordinadorca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationAlimentsca
dc.subject.otherConvolutional neural networksen
dc.subject.otherOptical pattern recognitionen
dc.subject.otherComputer softwareen
dc.subject.otherComputer visionen
dc.subject.otherMachine learningen
dc.subject.otherBachelor's thesesen
dc.subject.otherFooden
dc.titleAnalyzing state-of-the-art CNN’s explainability focusing on food classificationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_joan_bergada_salsen.pdf
Mida:
62 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria