The consistency of the negation of the Continuum Hypothesis

dc.contributor.advisorMartínez Alonso, Juan Carlos
dc.contributor.authorFernàndez Dejean, Anton
dc.date.accessioned2022-10-19T09:26:38Z
dc.date.available2022-10-19T09:26:38Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Juan Carlos Martínez Alonsoca
dc.description.abstract[en] The purpose of this work is to prove the consistency of the negation of the Continuum Hypothesis $(\mathrm{CH})$ with the Zermelo - Fraenkel axiomatic system, including the Axiom of Choice (ZFC). The Continuum Hypothesis states that there is no set whose cardinality is strictly between the cardinality of the set of integers and the cardinality of the set of real numbers. It is well-known that $C H$ is independent of ZFC: neither $C H$ nor its negation can be proved from ZFC. In order to show the consistency of $\neg C H$, we will use the method of forcing that permits us to construct a model that satisfies all the axioms of $Z F C$ and where $C H$ fails.ca
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/189975
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Anton Fernàndez Dejean, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de conjuntsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationLògica matemàticaca
dc.subject.classificationForcing (Teoria de models)ca
dc.subject.otherSet theoryen
dc.subject.otherBachelor's theses
dc.subject.otherMathematical logicen
dc.subject.otherForcing (Model theory)en
dc.titleThe consistency of the negation of the Continuum Hypothesisca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_fernandez_dejean_anton.pdf
Mida:
538.48 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria