Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/152916
Level sets as progressing waves: an example for wake-free waves in every dimension
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The potential energy surface of a molecule can be decomposed into equipotential hypersurfaces of the level sets. It is a foliation. The main result is that the contours are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, as well as with a corresponding eikonal equation. The energy seen as an additional coordinate plays the central role in this treatment. A solution of the wave equation can be a sharp front in the form of a delta distribution. We discuss a general Huygens' principle: there is no wake of the wave solution in every dimension.
Matèries
Matèries (anglès)
Citació
Citació
QUAPP, Wolfgang, BOFILL I VILLÀ, Josep m.. Level sets as progressing waves: an example for wake-free waves in every dimension. _Journal of Mathematical Chemistry_. 2013. Vol. 52, núm. 2, pàgs. 654-664. [consulta: 23 de gener de 2026]. ISSN: 0259-9791. [Disponible a: https://hdl.handle.net/2445/152916]