Level sets as progressing waves: an example for wake-free waves in every dimension

dc.contributor.authorQuapp, Wolfgang
dc.contributor.authorBofill i Villà, Josep M.
dc.date.accessioned2020-03-18T10:06:51Z
dc.date.available2020-03-18T10:06:51Z
dc.date.issued2013-11-12
dc.date.updated2020-03-18T10:06:52Z
dc.description.abstractThe potential energy surface of a molecule can be decomposed into equipotential hypersurfaces of the level sets. It is a foliation. The main result is that the contours are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, as well as with a corresponding eikonal equation. The energy seen as an additional coordinate plays the central role in this treatment. A solution of the wave equation can be a sharp front in the form of a delta distribution. We discuss a general Huygens' principle: there is no wake of the wave solution in every dimension.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec643390
dc.identifier.issn0259-9791
dc.identifier.urihttps://hdl.handle.net/2445/152916
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s10910-013-0286-9
dc.relation.ispartofJournal of Mathematical Chemistry, 2013, vol. 52, num. 2, p. 654-664
dc.relation.urihttps://doi.org/10.1007/s10910-013-0286-9
dc.rights(c) Springer Verlag, 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationQuímica física
dc.subject.otherPhysical and theoretical chemistry
dc.titleLevel sets as progressing waves: an example for wake-free waves in every dimension
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
643390.pdf
Mida:
393.08 KB
Format:
Adobe Portable Document Format