Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Oviedo de la Fuente, Manuel et al., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/122288

Predicting seasonal influenza transmission using functional regression models with temporal dependence

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This paper proposes a novel approach that uses meteorological information to predict the incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS) methods in the multivariate framework to functional regression models with dependent errors. These kinds of models are useful when the recent history of the incidence of influenza are readily unavailable (for instance, by delays on the communication with health informants) and the prediction must be constructed by correcting the temporal dependence of the residuals and using more accessible variables. A simulation study shows that the GLS estimators render better estimations of the parameters associated with the regression model than they do with the classical models. They obtain extremely good results from the predictive point of view and are competitive with the classical time series approach for the incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also proposed that can help to model complicated dependence structures. For constructing the model, the distance correlation measure was employed to select relevant information to predict influenza rate mixing multivariate and functional variables. These kinds of models are extremely useful to health managers in allocating resources in advance to manage influenza epidemics

Matèries (anglès)

Citació

Citació

OVIEDO DE LA FUENTE, Manuel, FEBRERO-BANDE, Manuel, MUÑOZ, María pilar, DOMÍNGUEZ GARCÍA, Àngela. Predicting seasonal influenza transmission using functional regression models with temporal dependence. _PLoS One_. 2018. Vol. 13, núm. 4, pàgs. e0194250. [consulta: 20 de gener de 2026]. ISSN: 1932-6203. [Disponible a: https://hdl.handle.net/2445/122288]

Exportar metadades

JSON - METS

Compartir registre