Predicting seasonal influenza transmission using functional regression models with temporal dependence

dc.contributor.authorOviedo de la Fuente, Manuel
dc.contributor.authorFebrero-Bande, Manuel
dc.contributor.authorMuñoz, María Pilar
dc.contributor.authorDomínguez García, Àngela
dc.date.accessioned2018-05-11T08:25:23Z
dc.date.available2018-05-11T08:25:23Z
dc.date.issued2018-04-25
dc.date.updated2018-05-11T08:25:23Z
dc.description.abstractThis paper proposes a novel approach that uses meteorological information to predict the incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS) methods in the multivariate framework to functional regression models with dependent errors. These kinds of models are useful when the recent history of the incidence of influenza are readily unavailable (for instance, by delays on the communication with health informants) and the prediction must be constructed by correcting the temporal dependence of the residuals and using more accessible variables. A simulation study shows that the GLS estimators render better estimations of the parameters associated with the regression model than they do with the classical models. They obtain extremely good results from the predictive point of view and are competitive with the classical time series approach for the incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also proposed that can help to model complicated dependence structures. For constructing the model, the distance correlation measure was employed to select relevant information to predict influenza rate mixing multivariate and functional variables. These kinds of models are extremely useful to health managers in allocating resources in advance to manage influenza epidemics
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec680234
dc.identifier.issn1932-6203
dc.identifier.pmid29694350
dc.identifier.urihttps://hdl.handle.net/2445/122288
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0194250
dc.relation.ispartofPLoS One, 2018, vol. 13, num. 4, p. e0194250
dc.relation.urihttps://doi.org/10.1371/journal.pone.0194250
dc.rightscc-by (c) Oviedo de la Fuente, Manuel et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationInfluenzavirus
dc.subject.classificationMeteorologia
dc.subject.otherInfluenza viruses
dc.subject.otherMeteorology
dc.titlePredicting seasonal influenza transmission using functional regression models with temporal dependence
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
680234.pdf
Mida:
2.57 MB
Format:
Adobe Portable Document Format