Predictive model to identify multiple failure to biological therapy in patients with rheumatoid arthritis

dc.contributor.authorNovella Navarro, Marta
dc.contributor.authorBenavent, Diego
dc.contributor.authorRuiz Esquide, Virginia
dc.contributor.authorTornero, Carolina
dc.contributor.authorDíaz Almirón, Mariana
dc.contributor.authorChacur, Chafik Alejandro
dc.contributor.authorPeiteado, Diana
dc.contributor.authorVillalba, Alejandro
dc.contributor.authorSanmartí Sala, Raimon
dc.contributor.authorPlasencia Rodríguez, Chamaida
dc.contributor.authorBalsa, Alejandro
dc.date.accessioned2023-07-24T12:39:22Z
dc.date.available2023-07-24T12:39:22Z
dc.date.issued2022-10-06
dc.date.updated2023-06-28T08:49:07Z
dc.description.abstractDespite advances in the treatment of rheumatoid arthritis (RA) and the wide range of therapies available, there is a percentage of patients whose treatment presents a challenge for clinicians due to lack of response to multiple biologic and target-specific disease-modifying antirheumatic drugs (b/tsDMARDs).To develop and validate an algorithm to predict multiple failure to biological therapy in patients with RA.Observational retrospective study involving subjects from a cohort of patients with RA receiving b/tsDMARDs.Based on the number of prior failures to b/tsDMARDs, patients were classified as either multi-refractory (MR) or non-refractory (NR). Patient characteristics were considered in the statistical analysis to design the predictive model, selecting those variables with a predictive capability. A decision algorithm known as 'classification and regression tree' (CART) was developed to create a prediction model of multi-drug resistance. Performance of the prediction algorithm was evaluated in an external independent cohort using area under the curve (AUC).A total of 136 patients were included: 51 MR and 85 NR. The CART model was able to predict multiple failures to b/tsDMARDs using disease activity score-28 (DAS-28) values at 6 months after the start time of the initial b/tsDMARD, as well as DAS-28 improvement in the first 6 months and baseline DAS-28. The CART model showed a capability to correctly classify 94.1% NR and 87.5% MR patients with a sensitivity = 0.88, a specificity = 0.94, and an AUC = 0.89 (95% CI: 0.74-1.00). In the external validation cohort, 35 MR and 47 NR patients were included. The AUC value for the CART model in this cohort was 0.82 (95% CI: 0.73-0.9).Our model correctly classified NR and MR patients based on simple measurements available in routine clinical practice, which provides the possibility to characterize and individualize patient treatments during early stages.© The Author(s), 2022.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina9333032
dc.identifier.issn1759-7218
dc.identifier.pmid36226311
dc.identifier.urihttps://hdl.handle.net/2445/201108
dc.language.isoeng
dc.publisherSAGE
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1177/1759720X221124028
dc.relation.ispartofTherapeutic Advances In Musculoskeletal Disease, 2022, vol. 14
dc.relation.urihttps://doi.org/10.1177/1759720X221124028
dc.rightscc by-nc (c) Novella Navarro, Marta et al, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceArticles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
dc.subject.classificationArtritis reumatoide
dc.subject.classificationTeoria de la predicció
dc.subject.classificationTerapèutica
dc.subject.otherRheumatoid arthritis
dc.subject.otherPrediction theory
dc.subject.otherTherapeutics
dc.titlePredictive model to identify multiple failure to biological therapy in patients with rheumatoid arthritis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Predictive model to identify multiple failure to biological therapy in patients with rheumatoid arthritis_TherapeuricAdvancesInMuskuloskeletal.pdf
Mida:
578.03 KB
Format:
Adobe Portable Document Format