Diamond forms during low pressure serpentinisation of oceanic lithosphere

dc.contributor.authorPujol Solà, Núria
dc.contributor.authorGarcia-Casco, Antonio
dc.contributor.authorProenza Fernández, Joaquín Antonio
dc.contributor.authorGonzález Jiménez, José María
dc.contributor.authordel Campo, A.
dc.contributor.authorColas, V.
dc.contributor.authorCanals i Sabaté, Àngels
dc.contributor.authorSanchez-Navas, A.
dc.contributor.authorRoqué, Josep
dc.date.accessioned2023-03-10T09:17:27Z
dc.date.available2023-03-10T09:17:27Z
dc.date.issued2020-09-10
dc.date.updated2023-03-10T09:17:27Z
dc.description.abstractDiamond is commonly regarded as an indicator of ultra-high pressure conditions in Earth System Science. This canonical view is challenged by recent data and interpretations that suggest metastable growth of diamond in low pressure environments. One such environment is serpentinisation of oceanic lithosphere, which produces highly reduced CH4-bearing fluids after olivine alteration by reaction with infiltrating fluids. Here we report the first ever observed in situ diamond within olivine-hosted, CH4-rich fluid inclusions from low pressure oceanic gabbro and chromitite samples from the Moa-Baracoa ophiolitic massif, eastern Cuba. Diamond is encapsulated in voids below the polished mineral surface forming a typical serpentinisation array, with methane, serpentine and magnetite, providing definitive evidence for its metastable growth upon low temperature and low pressure alteration of oceanic lithosphere and super-reduction of infiltrated fluids. Thermodynamic modelling of the observed solid and fluid assemblage at a reference P-T point appropriate for serpentinisation (350 °C and 100 MPa) is consistent with extreme reduction of the fluid to logfO2 (MPa) = −45.3 (ΔlogfO2[Iron-Magnetite] = −6.5). These findings imply that the formation of metastable diamond at low pressure in serpentinised olivine is a widespread process in modern and ancient oceanic lithosphere, questioning a generalised ultra-high pressure origin for ophiolitic diamond.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec704005
dc.identifier.issn2410-339X
dc.identifier.urihttps://hdl.handle.net/2445/194981
dc.language.isoeng
dc.publisherEuropean Association of Geochemistry
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.7185/geochemlet.2029
dc.relation.ispartofGeochemical Perspectives Letters, 2020, vol. 15, p. 19-24
dc.relation.urihttps://doi.org/10.7185/geochemlet.2029
dc.rightscc-by (c) Pujol Solà, Núria et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)
dc.subject.classificationMineralogia
dc.subject.classificationDiamants
dc.subject.otherMineralogy
dc.subject.otherDiamonds
dc.titleDiamond forms during low pressure serpentinisation of oceanic lithosphere
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
704005.pdf
Mida:
4.42 MB
Format:
Adobe Portable Document Format