Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Gómez Andrés, Alba et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/219747

Decoding agency attribution using single trial error-related brain potentials

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Being able to distinguish between self and externally generated actions is a key factor influencing learning and adaptive behavior. Previous literature has highlighted that whenever a person makes or perceives an error, a series of error-related potentials (ErrPs) can be detected in the electroencephalographic (EEG) signal, such as the error-related negativity (ERN) component. Recently, ErrPs have gained a lot of interest for the use in brain-computer interface (BCI) applications, which give the user the ability to communicate by means of decoding his/her brain activity. Here, we explored the feasibility of employing a support vector machine classifier to accurately disentangle self-agency errors from other-agency errors from the EEG signal at a single-trial level in a sample of 23 participants. Our results confirmed the viability of correctly disentangling self/internal versus other/external agency-error attributions at different stages of brain processing based on the latency and the spatial topographical distribution of key ErrP features, namely, the ERN and P600 components, respectively. These results offer a new perspective on how to distinguish self versus externally generated errors providing new potential implementations on BCI systems.

Matèries (anglès)

Citació

Citació

GÓMEZ ANDRÉS, Alba, CERDA-COMPANY, Xim, CUCURELL, David, CUNILLERA, Toni, RODRÍGUEZ FORNELLS, Antoni. Decoding agency attribution using single trial error-related brain potentials. _Psychophysiology_. 2023. Vol. 61, núm. 1. [consulta: 3 de febrer de 2026]. ISSN: 0048-5772. [Disponible a: https://hdl.handle.net/2445/219747]

Exportar metadades

JSON - METS

Compartir registre