Generalization of browder's fixed point theorem and its applications

dc.contributor.authorMarchi, Ezio
dc.contributor.authorMartínez Legaz, Juan Enrique
dc.date.accessioned2020-03-03T14:19:04Z
dc.date.available2020-03-03T14:19:04Z
dc.date.issued1989
dc.descriptionPreprint enviat per a la seva publicació en una revista científica: Topol. Methods Nonlinear Anal. Volume 2, Number 2 (1993), 277-291. [https://projecteuclid.org/download/pdf_1/euclid.tmna/1479287132].ca
dc.description.abstractFrom an infinite dimensional version of a generalization, dueto Peleg, of the Knaster-Kuratowski-Mazurkiewicz's theorem, we obtain a generalization of Browder's fixed point theorem, for multi-valued mappings from the product of a finite family of non-empty compact convex sets ( each in a Hausdorff topological vector space) into each of its factors. By applying this thorem, we deduce sorne Ky Fan type inequalities, from one of which a generalization of the Ky Fan's intersection theorem on sets with convex sections is obtained.ca
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/151823
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.relation.isformatofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 32.12]
dc.relation.ispartofseriesMathematics Preprint Series; 71ca
dc.rights(c) Ezio Marchi et al., 1989
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourcePreprints de Matemàtiques - Mathematics Preprint Series
dc.subject.classificationDesigualtats (Matemàtica)
dc.subject.classificationGeometria convexa
dc.subject.classificationTeoria del punt fix
dc.subject.classificationJocs no cooperatius (Matemàtica)
dc.subject.otherUniversitat de Barcelona. Institut de Matemàtica
dc.titleGeneralization of browder's fixed point theorem and its applicationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
MPS_N071.pdf
Mida:
502.13 KB
Format:
Adobe Portable Document Format
Descripció: