A design strategy for improving adaptive conjoint analysis

dc.contributor.authorHuertas García, Rubén
dc.contributor.authorGázquez-Abad, Juan Carlos
dc.contributor.authorForgas Coll, Santiago
dc.date.accessioned2016-11-04T13:03:12Z
dc.date.available2016-11-04T13:03:12Z
dc.date.issued2016
dc.date.updated2016-11-04T13:03:17Z
dc.description.abstractAdaptive conjoint analysis (ACA) is a market research methodology for measuring utility in business-to-business and customer studies. Based on partial profiles, ACA tailors an experiment's design to each respondent depending on their previously stated preferences, ordered in a self-assessment questionnaire. The purpose of this paper is to describe advantages and disadvantages of using a partial-profile randomised experiment, the usual system, and to propose a new design strategy for arranging profiles in blocks that improve its performance.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec634080
dc.identifier.issn0885-8624
dc.identifier.urihttps://hdl.handle.net/2445/103305
dc.language.isoeng
dc.publisherEmerald
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1108/JBIM-02-2013-0043
dc.relation.ispartofJournal of Business & Industrial Marketing, 2016, vol. 31, num. 3, p. 328-338
dc.relation.urihttps://doi.org/10.1108/JBIM-02-2013-0043
dc.rights(c) Emerald, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Empresa)
dc.subject.classificationDisseny d'experiments
dc.subject.classificationAnàlisi conjunt (Màrqueting)
dc.subject.classificationAnàlisi factorial
dc.subject.otherExperimental design
dc.subject.otherConjoint analysis (Marketing)
dc.subject.otherFactor analysis
dc.titleA design strategy for improving adaptive conjoint analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
634080.pdf
Mida:
689.84 KB
Format:
Adobe Portable Document Format