El Teorema de Brown-Shields-Zeller
| dc.contributor.advisor | Massaneda Clares, Francesc Xavier | |
| dc.contributor.author | Márquez Martı́nez, Ferran | |
| dc.date.accessioned | 2023-06-01T08:47:56Z | |
| dc.date.available | 2023-06-01T08:47:56Z | |
| dc.date.issued | 2023-01-24 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Francesc Xavier Massaneda Clares | ca |
| dc.description.abstract | [en] In this memoir we will prove the extension of the Brown-Shields-Zeller Theorem to $H^p$, which states that a sequence in the unit disk $\mathbb{D}$ is sampling for the Hardy space $H^p$ if and only if almost every point of the unit circle is a non-tangential limit point of the sequence. To prove this result we will base our study in the Harmonic analysis, in particular the study of harmonic functions and Poisson kernels and integrals, which will play an important role in the work. Finally, we will finish with a factorization on the Hardy spaces to give way to the proof of Brown-Shields-Zeller. | ca |
| dc.format.extent | 47 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/198754 | |
| dc.language.iso | cat | ca |
| dc.rights | cc-by-nc-nd (c) Ferran Márquez Martı́nez, 2023 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Anàlisi harmònica | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Espais de Hardy | ca |
| dc.subject.classification | Teoria del potencial (Matemàtica) | ca |
| dc.subject.other | Harmonic analysis | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Hardy spaces | en |
| dc.subject.other | Potential theory (Mathematics) | en |
| dc.title | El Teorema de Brown-Shields-Zeller | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- tfg_marquez_martinez_ferran.pdf
- Mida:
- 669.22 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria