Sèries circulars i el porisma d'Steiner

dc.contributor.advisorNaranjo del Val, Juan Carlos
dc.contributor.authorTomàs Ripollés, Tània
dc.date.accessioned2020-03-13T08:59:59Z
dc.date.available2020-03-13T08:59:59Z
dc.date.issued2019-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Juan Carlos Naranjo del Valca
dc.description.abstract[en] In this work, we will study projective geometry mainly in the plane, beginning by giving structure of projective line to a conic so we can work with projectivities on conics. This is useful to prove theorems such as Desargues’ theorem for pencils of conics. We will also be studying metric projective geometry which will allow us to dicuss about circles, orthogonality, angles, etc. in the projective plane. This will be used to on one hand, study classical results such as Euler’s circle and, on the other hand, to prove a more advanced result, Steiner’s porism. To see this theorem, algebraic geometry is generally used but on this project we will study it under the projective geometry framework.ca
dc.format.extent40 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/152697
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Tània Tomàs Ripollés, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationGeometria projectivaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationSeccions còniquesca
dc.subject.classificationGeometria analíticaca
dc.subject.classificationGeometria algebraicaca
dc.subject.otherProjective geometryen
dc.subject.otherBachelor's theses
dc.subject.otherConic sectionsen
dc.subject.otherAnalytic geometryen
dc.subject.otherAlgebraic geometryen
dc.titleSèries circulars i el porisma d'Steinerca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
152697.pdf
Mida:
791.34 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria