Siegel's linearization theorem

dc.contributor.advisorHaro, Àlex
dc.contributor.authorRaich Bros, Carles
dc.date.accessioned2018-05-11T10:46:00Z
dc.date.available2018-05-11T10:46:00Z
dc.date.issued2017-07-07
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Àlex Haroca
dc.description.abstract[en] The purpose of this study is to give an insight to Siegel’s linearization theorem, a result in discrete dynamics of one-dimensional holomorphic maps that claims the existence of a change of coordinates in a neighbourhood of a map’s fixed point to its linear part, whenever the multiplier for such point satisfies the Diophantine condition. This overall approach aims to provide an understanding of the theorem and all it encompasses. It firstly puts forward necessary knowledge in Diophantine approximations as well as complex and functional analysis and introduces some background to Schröder’s equation, the conjugacy problem in which the theorem originates. Once set, the theorem is proved in great detail and the dissertation concludes with a numerical exploration performed to visualize and ponder about the most relevant results forementioned.ca
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/122304
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Carles Raich Bros, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAplicacions holomòrfiques
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationSistemes dinàmics diferenciablesca
dc.subject.classificationEquació de Schrödingerca
dc.subject.classificationCorbes algebraiquesca
dc.subject.otherHolomorphic mappings
dc.subject.otherBachelor's theses
dc.subject.otherDifferentiable dynamical systemsen
dc.subject.otherSchrödinger equationen
dc.subject.otherAlgebraic curvesen
dc.titleSiegel's linearization theoremca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.02 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria