Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/225538
Enhanced real options valuation with Machine learning : Applied case to energy finance
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This thesis explores real option valuation in the energy industry using deep learning methodologies. Despite the theoretical foundation of real options in financial analysis, their practical application in the volatile energy sector remains under-explored. This study bridges this gap by integrating advanced data science techniques with traditional financial models. Utilizing machine learning architectures, particularly deep learning, the study evaluates these models’ efficacy in capturing the uncertainties and dynamic investment opportunities in energy projects, comparing their performance against traditional financial approaches and integrating predictions within the Black-Scholes-Merton model. The empirical case focuses on the European energy generation industry. This research validates deep learning’s utility in enhancing cash flow prediction and optimizing investment decisions under uncertainty. The thesis contributes to finance, energy economics, and AI, providing valuable tools and techniques for industry practitioners and researchers.
Descripció
Treballs Finals del Màster en Oficial en Empresa Internacional / International Business, Facultat d'Economia i Empresa, Universitat de Barcelona. Curs: 2023-2024. Tutor: David Alaminos Aguilera ; Fariza Achcaoucaou Iallouchen
Matèries (anglès)
Citació
Citació
MANOTAS ARROYAVE, Santiago. Enhanced real options valuation with Machine learning : Applied case to energy finance. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/225538]