Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Manotas Arroyave, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/225538

Enhanced real options valuation with Machine learning : Applied case to energy finance

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This thesis explores real option valuation in the energy industry using deep learning methodologies. Despite the theoretical foundation of real options in financial analysis, their practical application in the volatile energy sector remains under-explored. This study bridges this gap by integrating advanced data science techniques with traditional financial models. Utilizing machine learning architectures, particularly deep learning, the study evaluates these models’ efficacy in capturing the uncertainties and dynamic investment opportunities in energy projects, comparing their performance against traditional financial approaches and integrating predictions within the Black-Scholes-Merton model. The empirical case focuses on the European energy generation industry. This research validates deep learning’s utility in enhancing cash flow prediction and optimizing investment decisions under uncertainty. The thesis contributes to finance, energy economics, and AI, providing valuable tools and techniques for industry practitioners and researchers.

Descripció

Treballs Finals del Màster en Oficial en Empresa Internacional / International Business, Facultat d'Economia i Empresa, Universitat de Barcelona. Curs: 2023-2024. Tutor: David Alaminos Aguilera ; Fariza Achcaoucaou Iallouchen

Citació

Citació

MANOTAS ARROYAVE, Santiago. Enhanced real options valuation with Machine learning : Applied case to energy finance. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/225538]

Exportar metadades

JSON - METS

Compartir registre