Enhanced real options valuation with Machine learning : Applied case to energy finance

dc.contributor.advisorAlaminos Aguilera, David
dc.contributor.advisorAchcaoucaou Iallouchen, Fariza
dc.contributor.authorManotas Arroyave, Santiago
dc.date.accessioned2026-01-15T13:35:37Z
dc.date.available2026-01-15T13:35:37Z
dc.date.issued2024
dc.descriptionTreballs Finals del Màster en Oficial en Empresa Internacional / International Business, Facultat d'Economia i Empresa, Universitat de Barcelona. Curs: 2023-2024. Tutor: David Alaminos Aguilera ; Fariza Achcaoucaou Iallouchen
dc.description.abstractThis thesis explores real option valuation in the energy industry using deep learning methodologies. Despite the theoretical foundation of real options in financial analysis, their practical application in the volatile energy sector remains under-explored. This study bridges this gap by integrating advanced data science techniques with traditional financial models. Utilizing machine learning architectures, particularly deep learning, the study evaluates these models’ efficacy in capturing the uncertainties and dynamic investment opportunities in energy projects, comparing their performance against traditional financial approaches and integrating predictions within the Black-Scholes-Merton model. The empirical case focuses on the European energy generation industry. This research validates deep learning’s utility in enhancing cash flow prediction and optimizing investment decisions under uncertainty. The thesis contributes to finance, energy economics, and AI, providing valuable tools and techniques for industry practitioners and researchers.
dc.format.extent44 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/225538
dc.language.isoeng
dc.rightscc-by-nc-nd (c) Manotas Arroyave, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationIndústries energètiques
dc.subject.classificationTeoria de la predicció
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherEnergy industries
dc.subject.otherPrediction theory
dc.subject.otherMaster's thesis
dc.titleEnhanced real options valuation with Machine learning : Applied case to energy finance
dc.typeinfo:eu-repo/semantics/masterThesis

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM-Manotas Arroyave Santiago.pdf
Mida:
1.11 MB
Format:
Adobe Portable Document Format