El movimiento browniano como límite del paseo aleatorio: el teorema de Donsker

dc.contributor.advisorSanz-Solé, Marta
dc.contributor.authorPitarch Ferreiro, Marta
dc.date.accessioned2019-09-20T08:34:45Z
dc.date.available2019-09-20T08:34:45Z
dc.date.issued2019-01-17
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Marta Sanzca
dc.description.abstract[en] Brownian motion is a continuous time stochastic process with no memory, that is, the current state of the process is not influenced by its past. This property is named ”Markov property”. The main purpose of this paper is to obtain a Brownian motion from a discrete time stochastic process named Random Walk. The Random Walk is also a Markov process. To achieve this goal, we are going to study weak convergence on metric spaces and, in particular, on $C$ ([0, 1]). Brownian motion is the obtained as a weak limit of a sequence of linear interpolations of Random Walk normalized in a suitable way. This is Donsker’s theorem (1951).ca
dc.format.extent52 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/140617
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Marta Pitarch Ferreiro, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationMoviment browniàca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeorema del límit centralca
dc.subject.classificationRutes aleatòries (Matemàtica)ca
dc.subject.otherBrownian movementsen
dc.subject.otherBachelor's theses
dc.subject.otherCentral limit theoremen
dc.subject.otherRandom walks (Mathematics)en
dc.titleEl movimiento browniano como límite del paseo aleatorio: el teorema de Donskerca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG-PitarchFerreiroMarta.pdf
Mida:
465.88 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria