Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/174612
Penalized logistic regression to improve predictive capacity of rare events in surveys
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Logistic regression as a modelling technique of rare binary dependent variables with much fewer events (ones) than non-events (zeros) tends to underestimate their probability of occurrence. The vast literature devoted to the prediction of rare binary data identifies several ways to improve predictive performance by making modifications to the likelihood estimation. We propose two weighting mechanisms for incorporation in a pseudo-likelihood estimation that improve the predictive capacity of rare binary responses in data collected in complex surveys. We multiply sampling weights by specific correctors that lead to lower root mean square errors for event observations in almost all deciles. A case study is discussed where this method is implemented to predict the probability of suffering a workplace accident in a logistic regression model that is estimated with data from a survey conducted in Ecuador.
Matèries (anglès)
Citació
Citació
PESANTEZ-NARVAEZ, Jessica, GUILLÉN, Montserrat. Penalized logistic regression to improve predictive capacity of rare events in surveys. _Journal of Intelligent and Fuzzy Systems_. 2020. Vol. 38, núm. 5, pàgs. 5497-5507. [consulta: 24 de gener de 2026]. ISSN: 1064-1246. [Disponible a: https://hdl.handle.net/2445/174612]