Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/174612

Penalized logistic regression to improve predictive capacity of rare events in surveys

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Logistic regression as a modelling technique of rare binary dependent variables with much fewer events (ones) than non-events (zeros) tends to underestimate their probability of occurrence. The vast literature devoted to the prediction of rare binary data identifies several ways to improve predictive performance by making modifications to the likelihood estimation. We propose two weighting mechanisms for incorporation in a pseudo-likelihood estimation that improve the predictive capacity of rare binary responses in data collected in complex surveys. We multiply sampling weights by specific correctors that lead to lower root mean square errors for event observations in almost all deciles. A case study is discussed where this method is implemented to predict the probability of suffering a workplace accident in a logistic regression model that is estimated with data from a survey conducted in Ecuador.

Citació

Citació

PESANTEZ-NARVAEZ, Jessica, GUILLÉN, Montserrat. Penalized logistic regression to improve predictive capacity of rare events in surveys. _Journal of Intelligent and Fuzzy Systems_. 2020. Vol. 38, núm. 5, pàgs. 5497-5507. [consulta: 24 de gener de 2026]. ISSN: 1064-1246. [Disponible a: https://hdl.handle.net/2445/174612]

Exportar metadades

JSON - METS

Compartir registre