Penalized logistic regression to improve predictive capacity of rare events in surveys

dc.contributor.authorPesantez-Narvaez, Jessica
dc.contributor.authorGuillén, Montserrat
dc.date.accessioned2021-03-04T11:08:56Z
dc.date.available2021-03-04T11:08:56Z
dc.date.issued2020
dc.date.updated2021-03-04T11:08:57Z
dc.description.abstractLogistic regression as a modelling technique of rare binary dependent variables with much fewer events (ones) than non-events (zeros) tends to underestimate their probability of occurrence. The vast literature devoted to the prediction of rare binary data identifies several ways to improve predictive performance by making modifications to the likelihood estimation. We propose two weighting mechanisms for incorporation in a pseudo-likelihood estimation that improve the predictive capacity of rare binary responses in data collected in complex surveys. We multiply sampling weights by specific correctors that lead to lower root mean square errors for event observations in almost all deciles. A case study is discussed where this method is implemented to predict the probability of suffering a workplace accident in a logistic regression model that is estimated with data from a survey conducted in Ecuador.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699712
dc.identifier.issn1064-1246
dc.identifier.urihttps://hdl.handle.net/2445/174612
dc.language.isoeng
dc.publisherIOS Press
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3233/JIFS-179641
dc.relation.ispartofJournal of Intelligent and Fuzzy Systems, 2020, vol. 38, num. 5, p. 5497-5507
dc.relation.urihttps://doi.org/10.3233/JIFS-179641
dc.rights(c) IOS Press, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationControl predictiu
dc.subject.classificationProcessament de dades
dc.subject.classificationEnquestes
dc.subject.classificationEquador
dc.subject.otherRegression analysis
dc.subject.otherPredictive control
dc.subject.otherData processing
dc.subject.otherSurveys
dc.subject.otherEcuador
dc.titlePenalized logistic regression to improve predictive capacity of rare events in surveys
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699712.pdf
Mida:
324.13 KB
Format:
Adobe Portable Document Format