Invariants homològics de nusos

dc.contributor.advisorCasacuberta, Carles
dc.contributor.authorColldeforns Papiol, Gemma
dc.date.accessioned2014-04-01T08:20:26Z
dc.date.available2014-04-01T08:20:26Z
dc.date.issued2013-06-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Carles Casacubertaca
dc.description.abstractThis essay encompasses, first, some basic concepts related to knot theory. Secondly, we will deal with knot polynomials, presenting how the definition of the Jones polynomial can be reached by means of the Kauffman bracket. In the third chapter we will define co)homology of (co)chain complexes for its use in the fourth chapter. The main objective of this work is to learn how to compute Khovanov homology, which we deal with in the fourth chapter, where some Khovanov homology computations will also be carried out, with the purpose of extracting valuable conclusions therefrom. Finally, in the concluding section, we will present a global view of knot theory nowadays.ca
dc.format.extent75 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/53146
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Gemma Colldeforns Papiol, 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de nusos
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationHomologiaca
dc.subject.classificationTopologia algebraicaca
dc.subject.otherHomology
dc.subject.otherBachelor's theses
dc.subject.otherKnot theoryeng
dc.subject.otherAlgebraic topologyeng
dc.titleInvariants homològics de nusosca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Memoria.pdf
Mida:
5.11 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria