Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220153
Poisson’s equation and eigenfunctions of the Laplacian
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This work aims to explore the foundations of partial differential equations (PDEs) by focusing specifically on Poisson’s equation with Dirichlet boundary conditions and the eigenvalue problem for the Laplacian. These equations are of special interest in both mathematics and physics. Although they are among the simplest cases of PDEs, they introduce techniques and results that are key to solving more complex equations. In particular, we will introduce the weak formulation of both equations and prove the existence of weak solutions in two different ways. The first method uses Hilbert space techniques, such as the Lax-Milgram theorem and the Spectral theorem, while the second method involves the minimization of functionals. Ultimately, we will study the regularity of weak
solutions and examine a practical case in which the previous theory is very useful.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Tomás Sanz Perela
Matèries (anglès)
Citació
Col·leccions
Citació
LLEAL SIRVENT, Adrià. Poisson’s equation and eigenfunctions of the Laplacian. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/220153]