Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Adrià Lleal Sirvent, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220153

Poisson’s equation and eigenfunctions of the Laplacian

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This work aims to explore the foundations of partial differential equations (PDEs) by focusing specifically on Poisson’s equation with Dirichlet boundary conditions and the eigenvalue problem for the Laplacian. These equations are of special interest in both mathematics and physics. Although they are among the simplest cases of PDEs, they introduce techniques and results that are key to solving more complex equations. In particular, we will introduce the weak formulation of both equations and prove the existence of weak solutions in two different ways. The first method uses Hilbert space techniques, such as the Lax-Milgram theorem and the Spectral theorem, while the second method involves the minimization of functionals. Ultimately, we will study the regularity of weak solutions and examine a practical case in which the previous theory is very useful.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Tomás Sanz Perela

Citació

Citació

LLEAL SIRVENT, Adrià. Poisson’s equation and eigenfunctions of the Laplacian. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/220153]

Exportar metadades

JSON - METS

Compartir registre