Poisson’s equation and eigenfunctions of the Laplacian

dc.contributor.advisorSanz Perela, Tomás
dc.contributor.authorLleal Sirvent, Adrià
dc.date.accessioned2025-04-01T08:02:00Z
dc.date.available2025-04-01T08:02:00Z
dc.date.issued2024-06-10
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Tomás Sanz Perelaca
dc.description.abstractThis work aims to explore the foundations of partial differential equations (PDEs) by focusing specifically on Poisson’s equation with Dirichlet boundary conditions and the eigenvalue problem for the Laplacian. These equations are of special interest in both mathematics and physics. Although they are among the simplest cases of PDEs, they introduce techniques and results that are key to solving more complex equations. In particular, we will introduce the weak formulation of both equations and prove the existence of weak solutions in two different ways. The first method uses Hilbert space techniques, such as the Lax-Milgram theorem and the Spectral theorem, while the second method involves the minimization of functionals. Ultimately, we will study the regularity of weak solutions and examine a practical case in which the previous theory is very useful.en
dc.format.extent43 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/220153
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Adrià Lleal Sirvent, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEquacions en derivades parcialsca
dc.subject.classificationLaplacià
dc.subject.classificationProblema de Dirichletca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherPartial differential equationsen
dc.subject.otherLaplacian operator
dc.subject.otherDirichlet problemen
dc.subject.otherBachelor's thesesen
dc.titlePoisson’s equation and eigenfunctions of the Laplacianca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_Lleal_Sirvent_Adria.pdf
Mida:
459.34 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria