Àlgebra diferencial: El teorema de Liouville

dc.contributor.advisorCrespo Vicente, Teresa
dc.contributor.authorSánchez Aragón, Sergi
dc.date.accessioned2023-04-13T07:58:58Z
dc.date.available2023-04-13T07:58:58Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Teresa Crespo Vicenteca
dc.description.abstract[en] Abstract It's one of the first results a maths undergraduate hears about. The function $e^{-x^{2}}$ does not have an antiderivative, the value of its integral on any given interval where it can be calculated can only be approximated via numerical methods. But what does it mean for a real function to not have an antiderivative, a function that expresses its integral in simple terms? When do we even consider a real or complex function to be expressible in simple terms? These questions are the focus of this project. Using modern results in mathematics, mainly differential algebra, we aim to introduce a theoretical frame where these questions can be posed rigorously, one where we can prove the theorem that answers them: Liouville's theorem about antiderivatives.ca
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/196741
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Sergi Sánchez Aragón, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationÀlgebra diferencialca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationCossos algebraicsca
dc.subject.classificationNombres transcendentsca
dc.subject.classificationAnells commutatiusca
dc.subject.otherDifferential algebraen
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic fieldsen
dc.subject.otherTranscendental numbersen
dc.subject.otherCommutative ringsen
dc.titleÀlgebra diferencial: El teorema de Liouvilleca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_sanchez_aragon_sergi.pdf
Mida:
659.11 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria