The Mann-Su theorem
| dc.contributor.advisor | Mundet i Riera, Ignasi | |
| dc.contributor.author | Daura Serrano, Jordi | |
| dc.date.accessioned | 2019-06-21T08:10:38Z | |
| dc.date.available | 2019-06-21T08:10:38Z | |
| dc.date.issued | 2019-01-18 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Ignasi Mundet i Riera | ca |
| dc.description.abstract | [en] In this text, we give the necessary tools to prove and understand the Mann-Su theorem. In the context of transformation groups theory, the Mann-Su theorem gives a restriction on which finite groups can act effectively on a manifold. Particularly, we will find an upper bound $N$ that only depends on the manifold $M$ such that groups of the form $(\mathbb{Z}_p )^{r}$ can not act effectively on $M$ if $r > N$. Restricting ourselves to the case of smooth manifolds and actions, we will take a slightly different approach compared to the original paper where L.N Mann and J.C. Su proved the theorem. | ca |
| dc.format.extent | 57 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/135717 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Jordi Daura Serrano, 2019 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Grups finits | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Grups de transformacions | ca |
| dc.subject.classification | Grups de Lie | ca |
| dc.subject.other | Finite groups | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Transformation groups | en |
| dc.subject.other | Lie groups | en |
| dc.title | The Mann-Su theorem | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- 135717.pdf
- Mida:
- 366.33 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria