Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Río Fernández, José Antonio del et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/176854

Potential of microfluidics and lab-on-chip platforms to improve understanding of 'prion-like' protein assembly and behavior

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these 'prion-like' amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in 'prion-like' protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.

Matèries (anglès)

Citació

Citació

RÍO FERNÁNDEZ, José antonio del, FERRER, Isidro (ferrer abizanda). Potential of microfluidics and lab-on-chip platforms to improve understanding of 'prion-like' protein assembly and behavior. _Frontiers In Bioengineering And Biotechnology_. 2020. Vol. 8, núm. 570692. [consulta: 23 de gener de 2026]. ISSN: 2296-4185. [Disponible a: https://hdl.handle.net/2445/176854]

Exportar metadades

JSON - METS

Compartir registre