Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Orpella, Joan et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/181217

Language statistical learning responds to reinforcement learning principles rooted in the striatum

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Statistical learning (SL) is the ability to extract regularities from the environment. In the domain of language, this ability is fundamental in the learning of words and structural rules. In lack of reliable online measures, statistical word and rule learning have been primarily investigated using offline (post-familiarization) tests, which gives limited insights into the dynamics of SL and its neural basis. Here, we capitalize on a novel task that tracks the online SL of simple syntactic structures combined with computational modeling to show that online SL responds to reinforcement learning principles rooted in striatal function. Specifically, we demonstrate-on 2 different cohorts-that a temporal difference model, which relies on prediction errors, accounts for participants' online learning behavior. We then show that the trial-by-trial development of predictions through learning strongly correlates with activity in both ventral and dorsal striatum. Our results thus provide a detailed mechanistic account of language-related SL and an explanation for the oft-cited implication of the striatum in SL tasks. This work, therefore, bridges the long-standing gap between language learning and reinforcement learning phenomena.

Citació

Citació

ORPELLA, Joan, MAS-HERRERO, Ernest, RIPOLLÉS, Pablo, MARCO PALLARÉS, Josep, DIEGO BALAGUER, Ruth de. Language statistical learning responds to reinforcement learning principles rooted in the striatum. _PLoS Biology_. 2021. Vol. 19, núm. 9, pàgs. e3001119. [consulta: 21 de gener de 2026]. ISSN: 1544-9173. [Disponible a: https://hdl.handle.net/2445/181217]

Exportar metadades

JSON - METS

Compartir registre