Xarxes neuronals recurrents per a sèries temporals

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorCasals Lladó, Núria
dc.date.accessioned2018-09-26T08:35:13Z
dc.date.available2018-09-26T08:35:13Z
dc.date.issued2018-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Josep Fortiana Gregori,ca
dc.description.abstract[en] Recurrent neural networks (RNNs) have been widely used for processing sequential data and are capable of learning long-term dependencies. This project proceeds from its inception, studying the behaviour of the simplest Deep Learning structures, to learning issues associated with time series data analysis to finally achieve more complex architectures: Long Short-Term Memory and Gated Recurrent Units. A model with a Gated Recurrent Unit has been implemented to forecast time series data associated with electricity consumption.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/124823
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Núria Casals Lladó, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationAnàlisi de sèries temporalsca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationEnergia elèctricaca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's theses
dc.subject.otherComputer algorithmsen
dc.subject.otherTime-series analysisen
dc.subject.otherMachine learningen
dc.subject.otherElectric poweren
dc.titleXarxes neuronals recurrents per a sèries temporalsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
1.71 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.94 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria