Alternative Functionals Estimation Based on Index Models and Kernel Approach
| dc.contributor.advisor | Bolancé Losilla, Catalina | |
| dc.contributor.author | Dai, Lei | |
| dc.date.accessioned | 2024-09-13T11:36:03Z | |
| dc.date.available | 2024-09-13T11:36:03Z | |
| dc.date.issued | 2024 | |
| dc.description | Treballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2023-2024, Tutoria: Catalina Bolancé Losilla | ca |
| dc.description.abstract | This work explores the utilization of double cross-validation methods for determining the optimal bandwidth in kernel regression using single index-models. Kernel regression is a non-parametric technique widely employed in various fields, particularly in smoothing noisy data. The bandwidth parameter plays a crucial role in kernel regression, controlling the smoothness of the estimated function. Selecting an appropriate bandwidth is essential for achieving accurate and robust model performance. Traditional approaches to band- width selection often rely on heuristic methods or fixed rules, which may not be optimal for all datasets (...) | ca |
| dc.format.extent | 38 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/215131 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Dai, 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Màster Oficial - Ciències Actuarials i Financeres (CAF) | |
| dc.subject.classification | Funcions de Kernel | cat |
| dc.subject.classification | Anàlisi de regressió | cat |
| dc.subject.classification | Treballs de fi de màster | cat |
| dc.subject.other | Kernel functions | eng |
| dc.subject.other | Regression analysis | eng |
| dc.subject.other | Master's thesis | eng |
| dc.title | Alternative Functionals Estimation Based on Index Models and Kernel Approach | ca |
| dc.type | info:eu-repo/semantics/masterThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- TFM-CAF-Dai+Bolance_2024.pdf
- Mida:
- 493.24 KB
- Format:
- Adobe Portable Document Format
- Descripció: