Aproximació als conjunts de Julia i al conjunt de Mandelbrot

dc.contributor.advisorSombra, Martín
dc.contributor.authorFernàndez Porta, Marta
dc.date.accessioned2022-04-21T09:07:47Z
dc.date.available2022-04-21T09:07:47Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Martín Sombraca
dc.description.abstract[en] The aim of this project is the study of the density of repelling periodic points in the Julia set, and the theorem stating that, the closure of the c’s of the Mandelbrot set such that the function $z \sup{2} + c$, has a super attracting cycle, is the entire boundary of the Mandelbrot set. In order to achieve so, we focus on the periodic points, critical points and characteristics of the Julia set, starting with the fundamental concepts involved in the comprehension of this results.ca
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/185042
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marta Fernàndez Porta, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions de variables complexesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationFuncions holomòrfiquesca
dc.subject.classificationFuncions meromorfesca
dc.subject.classificationSistemes dinàmics diferenciablesca
dc.subject.otherFunctions of complex variablesen
dc.subject.otherBachelor's theses
dc.subject.otherHolomorphic functionsen
dc.subject.otherMeromorphic functionsen
dc.subject.otherDifferentiable dynamical systemsen
dc.titleAproximació als conjunts de Julia i al conjunt de Mandelbrotca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_marta_fernandez_porta.pdf
Mida:
999.64 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria