Càlcul estocàstic per a semimartingales i temps locals

dc.contributor.advisorSanz-Solé, Marta
dc.contributor.authorTorre i Estévez, Víctor de la
dc.date.accessioned2018-04-25T10:25:21Z
dc.date.available2018-04-25T10:25:21Z
dc.date.issued2017-06-29
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Marta Sanzca
dc.description.abstract[en] We start by defining the stochastic integral with respect continuous semimartingales. We then derive Itô’s formula and we show two important applications of this formula: Lévy’s characterization of Brownian motion and the Burkholder-Davis-Gundy inequalities. We extend Itô’s formula for convex functions by using local times. Finally, we apply the theory of local times to the case of Brownian motion: we proof the classical Trotter theorem and we identify the law of the Brownian local time at level 0.ca
dc.format.extent58 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/121869
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Vı́ctor de la Torre i Estévez, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi estocàstica
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationSemimartingales (Matemàtica)ca
dc.subject.classificationMoviment browniàca
dc.subject.classificationIntegrals estocàstiquesca
dc.subject.classificationProcessos de Lévyca
dc.subject.otherAnalyse stochastique
dc.subject.otherBachelor's theses
dc.subject.otherSemimartingales (Mathematics)en
dc.subject.otherBrownian movementsen
dc.subject.otherStochastic integralsen
dc.subject.otherLévy processesen
dc.titleCàlcul estocàstic per a semimartingales i temps localsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
501.4 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria