Zero sets of gaussian analytic functions

dc.contributor.advisorMassaneda Clares, Francesc Xavier
dc.contributor.authorMorgó Homs, Joan
dc.date.accessioned2019-09-19T08:33:38Z
dc.date.available2019-09-19T08:33:38Z
dc.date.issued2019-01-18
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Francesc Xavier Massaneda Claresca
dc.description.abstract[en] We study point processes given as zero sets of Gaussian analytic functions and prove that these point processes show local repulsion. We define Gaussian analytic functions and introduce its covariance kernel, which determines its probabilistic properties, and its first intensity which can be computed using the Edelman-Kostlan formula. Finally, we also study rigidness of some model examples -by computing the variance of the counting random variable of the zeros of the GAF- and we compare it with the independence of the Poisson point process -shown in an introductory section of this project- for the same model cases.ca
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/140519
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Joan Morgó Homs, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions analítiquesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationCorbes el·líptiquesca
dc.subject.classificationVarietats abelianesca
dc.subject.classificationFuncions zetaca
dc.subject.classificationProcessos gaussiansca
dc.subject.classificationFuncions enteresca
dc.subject.otherAnalytic functionsen
dc.subject.otherBachelor's theses
dc.subject.otherElliptic curvesen
dc.subject.otherAbelian varietiesen
dc.subject.otherZeta functionsen
dc.subject.otherGaussian processesen
dc.subject.otherEntire functionsen
dc.titleZero sets of gaussian analytic functionsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Morgó-Homs-Joan-TFG.pdf
Mida:
642.32 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria